
Executive Summary
The ever-growing consumer demand for more bandwidth and services for less
money has been driving service provider networks to their economic limit for some
years now. In addition, communications service providers (CoSPs) need to support
multiple access technology types (xDSL, PON, FWA, and DOCSIS) while making
better use of existing fiber networks and increasing service delivery performance,
all against a backdrop of declining revenues. With customer data traffic estimated
to grow at a 26 percent rate (year over year) from 2017 to 2023,1 future networking
solutions must show a path to solving tomorrow’s data compound-annual-growth-
rate (CAGR) challenge in a cost-effective and scalable way.

Pushing the boundary of performance requires the latest and greatest technology
along with deploying this technology in a holistic and easy-to-use way. This paper
proposes the following set of design principles for taking solutions based on Intel®
architecture processors and network functions virtualization (NFV) to the next level
of performance and network automation by utilizing the following:

• Optimized server configuration

• Software “run-to-completion” model

• Intelligent I/O packet and flow distribution

• Independent scaling of the control and user planes

• Hierarchical quality of service considerations

• Deploying using Cloud Native Networking Fundamentals

Following these principles, Intel has demonstrated nearly 661 Gbps² of routing
RFC2544 (zero packet loss) performance for a virtual broadband network gateway
(vBNG) running on a single 3rd Gen Intel® Xeon® Scalable processor server. This
paper describes this effort and proposes a vBNG architecture for building network
infrastructure and network functions to better take advantage of the underlying
infrastructure and address the challenge of the data CAGR.

To complement the shift of the Broadband data plane into a virtual ecosystem,
this paper also puts forward a deployment architecture using the container
orchestration engine Kubernetes (K8s).

Table of Contents

Executive Summary 1

Broadband Network Gateway 2

Reference Application Pipeline. . . . 2

New Architectural Proposal and

Reasoning . . 3

Orchestration of the BNG. 7

Performance Benchmarking⁷. 8

Summary . . 9

Appendix. . 10

Authors

Padraig Connolly
Intel Platform Applications Engineer

Andrew Duignan
Intel Platform Solutions Architect

Shivapriya Hiremath
Intel Platform Applications Engineer

Tommy Long
Intel Software Architect

Jasvinder Singh
Intel Software Engineer

Eoin Walsh
Intel Platform Solutions Architect

Re-Architecting the Broadband Network Gateway
(BNG) in a Network Functions Virtualization (NFV)
and Cloud Native World

Architecture Study
Broadband Network Gateway

Figure 1. Example of a Network Connecting Clients to a Data Center

White Paper

2. Architecture Study | Broadband Network Gateway

Broadband Network Gateway
The BNG, aka broadband remote access server (BRAS), is
the network edge aggregation point used by subscribers
to access the Internet service provider (ISP) network.
Through the BNG, subscribers connect to the ISP network to
download Internet originating traffic and ISP services (e.g.,
web, voice, data, and video).

The vBNG is a virtualized software instantiation of what
is typically a large, ASIC-based, fixed-function appliance
usually located in a central office or metro point of
presence (PoP).

Reference Application Pipeline
Each generation of Intel technologies (e.g., CPU, NIC, SSD,
FPGAs, and accelerators) brings new opportunities to
improve performance and quality of experience (QoE) for
users. Showing how to take advantage of these technologies,
Intel builds reference pipelines, like the representative stages
of vBNG control and data plane functions shown in Figure 2.

The control plane is responsible for subscriber authentication
and management, including monthly usage service access
and data plane configuration, based on subscriber profiles.

The upstream data plane manages the flow of traffic from
users’ home routers to the ISP network. The average
packet size for upstream traffic is generally smaller than for
downstream traffic, and the amount of upstream traffic is
normally five to eight times less than downstream traffic.
While applications like Instagram, Snapchat, and Periscope,

Figure 2. Virtual Broadband Network Gateway (vBNG)
Control and Data Plane Blocks

Figure 3. Uplink Packet Flow Stages

have seen larger swathes of data being pushed onto the ISP
network by users, broadband users are still overwhelmingly
net consumers of data. In recent years, data and content
creation has reduced the gap between upstream and
downstream bandwidth usage.

Upstream Processing Stages
The Intel reference pipeline implements the upstream
processing stages shown in Figure 3 and described in
the following:

Packet Rx (Receive): The data plane development kit (DPDK)
poll mode driver (PMD) is used to receive bursts of frames
from the network interface controller (NIC) port and send
them directly into an uplink thread to begin vBNG packet
processing, described in the next stages.

Access Control Lists: The DPDK Access Control List (ACL)
library is used to apply an ordered list of filters (e.g., masks,
ranges, etc.) to the frame. These comprise permit and deny
filters, and all filters are evaluated per packet.

Flow Classification: The DPDK Flow Classification Library is
used to identify the session and classify the packet based on
selected fields (e.g., 5 tuple).

Metering Policing: The DPDK Traffic Metering and Policing
API is used to apply a two-rate, three-color marking and
policing scheme to the traffic.

DSCP Rewrite: This stage supports the optional classification
of the traffic type and rewrite of the IP differentiated services
code point (DSCP) field to map the stream to a network
supported class of service (CoS).

NAT: Optionally, NAT 44 is performed to convert private
addresses to public addresses.

Routing: Access network encapsulations are stripped from
data plane packets, and the packets are routed to the correct
core network interface for transmission. Any core network
encapsulations, such as MPLS, are applied either here or in
the packet Tx block.

Packet Tx (Transmit): The DPDK PMD is used to send bursts
of frames to the NIC port.

3. Architecture Study | Broadband Network Gateway

The downstream data plane handles the flow of traffic and
data from the Internet and ISP network to the end user. It
manages and schedules traffic to users attached to the BNG.
The downstream function optimizes bandwidth and resource
usage to maximize users QoE, based on user tariff class and
traffic priorities. The goal of the ISP is to ensure all their
subscribers are receiving services to the highest standard
while maximizing the utility of the network infrastructure. By
2022, global IP video traffic is forecast to grow four-fold from
2017 to 2022, a CAGR of 29 percent,³ and this trend will drive
up the average packet size of the downstream link.

Downstream Processing Stages
The Intel reference pipeline implements the downstream
processing stages shown in Figure 4 and described in
the following:

Packet Rx: The DPDK PMD receives frames from the NIC
port and sends them directly into a downlink thread to begin
vBNG packet processing, described in the next stages.

Access Control Lists (ACL): The DPDK Access Control List
(ACL) library is used to apply an ordered list of filters (e.g.,
masks, ranges, etc.) to the frame. This stage blocks reverse
path forwarding.

NAT: Optionally, NAT 44 is performed to convert public
addresses to private addresses.

Traffic Management: Each packet runs through a hierarchical
QoS (HQoS) block to ensure high priority packets are
prioritized when transmitting packets to the access network.
It supports scalable five-level hierarchical construction (port,
subport, pipe, traffic class and queues) of traffic shapers and
schedulers to guarantee the bandwidth for different services
used by subscribers. Each pipe is assigned to a single
subscriber.

Routing: Access network encapsulations are stripped from
data plane packets, and the packets are routed to the correct
data network interface for transmission. Any access network
encapsulations, such as VLAN, PPPoE etc., are applied either
here or in the packet Txblock.

Packet Tx: Using a DPDK polled mode driver (PMD), bursts of
frames are transmitted to the NIC port.

New Architectural Proposal and Reasoning
In order to effectively deploy a BNG workload on a
general-purpose server, the following architectural and
implementation aspects should be considered:

Implementing a Run to Completion Model
One of the key considerations when designing a software-
based BNG is ensuring performance scalability per this
paper’s opening problem statement. The BNG should
be assigned the minimal number of resources needed to
support the current number of active subscribers at any time
of the day. This means the BNG must be able to scale both up
and down based on the current workload.

The Intel reference BNG pipeline uses a run to completion
model to process the uplink and downlink pipelines. As a
result, all pipeline functions executed on a packet are run
on the same core. This has advantages in that packets do
not have to move between cores, thereby minimizing cache
misses and overall latency. A direct result of this design
pattern is that an individual vBNG instance cannot scale out
beyond a single core. Scaling beyond a single core is done by
creating a new vBNG instance that runs on a different core.
The NIC is programmed (using custom headers supported
by the Comms DDP package) on the fly to direct specific
subscribers to each new individual vBNG instance (More on
this further on in the paper).

The combination of a run to completion model and a single
core running a single vBNG instance eliminates the need
for the orchestrator to understand the internal operation
of the vBNG application to scale. The orchestrator can scale
capacity up or down by increasing or decreasing the number
of CPU cores assigned to the BNG deployment (5 vCPUs per
Instance with K8s), enabling linear scalability across a given
server. The orchestrator can optimize resource utilization
when it is furnished with information regarding the number
of subscribers (for a known traffic profile) that a single core
instance can support, which may vary by CPU SKU.

Separating Uplink and Downlink Processing
CPU resource usage by the BNG uplink and downlink
pipelines are not symmetric since the downlink normally
requires more cycles per packet due to inherently larger
packet sizes. In order to effectively schedule a BNG, the
Intel reference pipeline splits the uplink and downlink into

Figure 4. Downlink Packet Flow Stages

4. Architecture Study | Broadband Network Gateway

Figure 5. CPU Core Allocation Example for 16vBNGs
Instances Running per Socket

Figure 6. BNG Downlink Container Using A Single SR-IOV VF
for Both Rx and Tx

two separate containers that can be instantiated and then
scheduled separately. This separation provides greater
flexibility in scheduling and CPU resource usage. For
example, a downlink pipeline can be assigned a full physical
core (two sibling hyper-threaded cores) while an uplink
pipeline might only require half a physical core (one hyper-
thread core). Figure 5 shows how the CPU resources of a dual
socket server could be partitioned when running sixteen
vBNG instances per socket in a Docker only configuration
(i.e not using K8s). Each pipeline can report telemetry
individually, and the telemetry database can be used to
maintain all relevant usage statistics. It is also worth noting
whilst uplink and downlink pipelines are deployed as
separate DPDK applications and containers this paper puts
forward the architecture of coupling them together using
Kubernetes and its pod deployment API.

Assigning a Single I/O Connection per Pipeline

The Intel reference pipeline should be run on a BNG
dataplane server connected to a basic leaf switch that
can route both access and data network traffic. With this
setup,the switch routes uplink traffic coming from the access
network ports to the BNG ports for processing and routes
returning packets from BNG uplink pipelines to the data
network ports. The flow is reversed for downlink traffic.
As mentioned previously, the amount of uplink traffic is
increasing over time, but it is generally only an eighth of
the downlink traffic in a wireline network. Therefore, a BNG
that uses separate,dedicated physical ports for access and
data network port connections is likely to under utilize the
available I/O bandwidth of the uplink ports. Instead, sharing
physical ports on a NIC between upstream and downstream
traffic allows I/O bandwidth to be fully utilized. As a vBNG
instance is split into two separate pipeline applications,
each pipeline only handles traffic for a single direction. All
traffic is routed to and from the server through the simple L2
switch, such that each pipeline does not require dedicated
access and data network ports. The server effectively needs
just a single I/O connection on which it receives traffic from
the switch and returns processed traffic to the switch for
forwarding, as shown in Figure 6.

The routing of subscriber traffic to a vBNG instance is
done via a dedicated Single Root Input/Output Virtualization
(SR-IOV) connection that can send arriving packets to
the vBNG in accordance with its SR-IOV switch(with DDP).
SR-IOV allows a single physical NIC port to be split and
shared among multiple pipeline instances, each with its own
I/O port i.e a Virtual Function (VF). SR-IOV also provides
flexibility in the use of physical NICs, such as dedicating a
physical NIC to downlink traffic only or sharing a NIC between
uplink and downlink traffic. As NIC speeds hit 100 gigabit, it is
expected that downlink and uplink traffic will share the same
physical NIC and these principals influence the deployment
architecture of the vBNG today.

Balancing I/O on the Server

With dual socket servers, internal connections such as
Platform Controller Hubs (PCHs) and SATA controllers are
commonly connected to CPU 0, as shown on the left side of
Figure 7. This can result in an uneven distribution of PCIe I/O
bandwidth between the CPUs, with most of the bandwidth
being connected to CPU 1. To balance the bandwidth, the
Intel vBNG application runs control plane functions on CPU
0 and data plane functions on CPU 1, as shown on the right
side of Figure 7.

Figure 7. Balancing I/O on a Server

5. Architecture Study | Broadband Network Gateway

(DCF) technology. DCF sets Flow Rules through a trusted
VF allowing the user to keep the SR-IOV Physical Function
bound to the Linux driver for management and metric
collection as seen in Figure 8. When distributing flows in the
Intel® Ethernet Network Adapter E810 it must be noted that
for distributing flows amongst VFs the SR-IOV Switch is used
and for distributing flows amongst Queues, Flow Director
(FDIR) or Receive Side Scaling (RSS) is used. In the BNG
deployment, flows are distributed using VFs thus that is the
focus of this paper. Further information on RSS and FDIR can
be found in other Intel Telco white papers.

Dynamic Device Personalization
Alongside DCF is Dynamic Device Personalization (DDP)⁶
which allows the SR-IOV Switch to filter on more packet
header types than the default amount without reloading the
Ethernet Controller NVM image. For the BNG application
deployment, the Telecommunication (Comms) Dynamic
Device Personalization (DDP) Package is used (Figure 9).
Once added this package allows the Ethernet Controller to
steer traffic based on PPPoE header fields to the Control
Plane offload VF. The DDP PPPoE profile enables the NIC
to route packets to specific VFs and queues (Figure 10) based
on the unique PPPoE header fields (described more in the
next section).

When deploying a BNG on a general-purpose server, it
is important to ensure there is enough I/O bandwidth to
fully utilize the available CPU resources on the platform
(i.e., the aim is to be CPU bound and not I/O bound). The
advent of Control and User Plane Separation (CUPS)⁴ for
BNG enables an entire server to be dedicated to running
the BNG data plane. All data processing is localized to a
single socket for performance efficiency, which necessitates
an equal amount of I/O to be connected to each socket to
achieve optimal performance. The provisioning of 2x16 or
4x8 lane PCIe Gen 4 (16 GT/s) slots on each socket provides
a total I/O bandwidth of 800 Gbps on the server, equally
balanced across the two sockets (see the Appendix for server
configuration details).

Distributing Flows Via a Network Interface Card (NIC)
As described above each BNG instance has a set number
vCPUs processing subscriber traffic. Some form of distributer
is required in order split out the subscriber flows among the
vCPUs. This distributor task can be performed in software
using dedicated cores, but there are several disadvantages
to this approach. First, this distributer function can become
a performance bottle neck as all flows must pass through
this software function. Second, having one or many cores
dedicated to performing distribution reduces the amount
of CPU cycles available to perform the actual BNG workload
processing, thus reducing the number of BNG subscribers the
server can handle.

These disadvantages can be overcome by distributing the
flows in the NIC to either SR-IOV VFs or Queues in the PMD,
which eliminates the software bottle neck, reduces latency
through the system, and provides the BNG the CPU cores and
cycles that otherwise would be used by the distributor task.

Assigning a Single I/O Connection per Pipeline
Device Config Function (DCF)

The Intel® Ethernet Network Adapter E810 is a NIC that
supports flow distribution using the Device Config Function

Figure 8. Device Config Function Workflow

Figure 9. DDP Packages for E810 NIC

6. Architecture Study | Broadband Network Gateway

Considering HQoS
Hierarchical QoS is a function that is implemented within
the vBNG downlink pipeline. It ensures traffic priority is
preserved when traffic coming from the core network is
scheduled for transmission on the reduced bandwidth access
network pipe to a subscriber, and the available bandwidth on
a given port is shared efficiently across all users. The HQoS
scheduler can either be implemented in NIC if support is
available or as a software function in packet processing
pipeline before the transmit function. As discussed
previously, each downlink pipeline has a single virtual
function connection for I/O. The following sections describe
three models for implementing HQoS:

Software-Only Model
A software-only model fully implements HQoS schedular
in software. As shown in Figure 12, each vBNG downlink
pipeline is apportioned part of the port’s overall bandwidth
and shapes its traffic to that sub port rate. The advantage of
this method is no hardware support is needed, and allows
to scale the HQoS scheduler instances with downlink packet
processing pipelines. The disadvantage of this method is
unused bandwidth in one vBNG instance cannot be shared
with another instance, which may lead to sub-optimal use of
the port’s bandwidth.

Hardware/Software Hybrid Model
A hybrid model can be used when the resources on the NIC
(e.g. queues, scheduler/shaping nodes) are not sufficient to

Figure 12. Software-Only HQOS Model

Forwarding Control Plane Packets
For control plane traffic, like PPPoE session setup or PPPoE
link control packets, the BNG data plane must identify and
forward these packets to the control plane for processing. In
a traditional BNG, the control plane and the data plane are
located in the same place and a local software queue is used
to move packets between them. With the advent of CUPS,
the control plane and the corresponding data plane is most
likely located in different physical locations in the network. In
this case, the BNG data plane needs to pass control packets
to the control plane by generating a physical link to forward
them. As can be seen in Figure 10, the Intel Ethernet Network
Adapter E810 is able to identify these control packets using
the Comms DDP package and forward them to a separate VFs
and queues (I/O), relieving the data plane of this task. The
Comms DDP package enables the Intel NIC to recognize these
control plane packets and forward them the control plane.
Figure 11 gives a higher level view of how this works with the
BNG application deployment.

Figure 10. NIC Routes Packets to Virtual Functions based on PPPoE and DHCP Packet Headers

Figure 11. Control Plane Traffic Forwarding

7. Architecture Study | Broadband Network Gateway

fully implement the HQoS scheduler as shown in Figure 13.
In this model, each BNG instance implements some
scheduling/shaping levels of the hierarchy in software
and remaining levels are implemented in NIC. Decision on
dividing the hierarchy between software and hardware
depends upon the number of NIC resources. As an
advantage, this model allows unused bandwidth from
one BNG instance to be shared among other instances.

Full HQoS Offload Model
A full HQoS offload model requires a NIC that can support
full offload of HQoS processing from all vBNG instances, as
shown in Figure 14. A major advantage of this model is the
CPU does not play a role in HQoS, freeing up CPU cycles
for other pipeline blocks.

The proposed vBNG architecture supports all three of
these models, depending on the capabilities of the
underlying hardware.

Orchestration of the BNG
The vBNG architecture proposed in this paper does not limit
how a vBNG instance is virtualized. For example, either full
virtual machine (VM) virtualization or Linux containers can
be used. When a vBNG comprises of two individual pipelines,
deploying each in a separate container may/can be better
as it is a light weight virtualization option, compared to
deploying in virtual machines. Containers also allow for more
rapid initialization and recovery of instances following the
convention in network deployments of high availability.
For the deployment of a vBNG instance in both the reference
application and this paper, a pair of containers is launched
by the orchestration engine Kubernetes. This section will
further discuss how this is achieved under the umbrella
convention of a Cloud-Native Network Function (CNF). The
two biggest influences on the design and deployment of the

Figure 13. Hardware/Software Hybrid Model

Figure 14. Full HQoS Offload Model

vBNG is the CUPs architecture and Cloud-Native Networking.
CUPS described earlier makes the control and user plane
two separate entities that communicate over a set API. This
section will mainly focus on how the vBNG achieves Cloud-
Native Networking at high throughput rates. Also referenced
in other Intel wireline papers are the following conventions
that a telco application needs to abide by to consider
itself a CNF:

•	 Highly Performant – The CNF must take advantage of
Enhanced Platform Awareness (EPA) features to ensure
low latency and high throughput.

•	 Agile Placement – The CNF must allow for flexible
placement to be allowed to deploy on any EPA feature
ready platform and must be generic to the EPA
infrastructure provided beneath.

•	 Lifecycle Management – Using automatic telemetry
aware controllers, the CNF must ensure that it can
scale resources under increasing workloads and retract
resources under decreasing workloads.

•	 Highly Available – The CNF must always present high
availability to its required workload by engraining
extreme fault tolerance into the component architecture
to meet the Service Level Agreement of almost zero
downtime. The CNF must also utilise the HA schema
to maintain interfaces for quick and simple service
upgrades without any effect on the service it provides.

•	 Observability – The CNF must ensure all network and
performance metrics of workloads are exposed through
an easy to consume platform allowing for rapid network
debugging and modification.

Date Plane Deployment
The deployment of the vBNG follows a strict microservice
model where each element of application deployment is
separated into the smallest possible execution unit that will
not affect performance. As can be seen in Figure 15, the full
Data Plane deployment (Not Control Plane) is separated into
3 components:
•	 BNG DP Management

- In short, this section is seen as the interface
between the Control Plane and the Data Plane in a
full CUPS deployment
- This section is responsible for:
	 • Receiving Data Plane Configuration (PFCP Agent)
	 • Setting and storing the Data Plane
	 Configuration (etcd)
	 •Retrieving telemetry data from the Data
	 Plane instances
	 • Managing the scale of vBNG Pods/Instances

•	 BNG Data Plane
- Discussed previously this section is responsible for:
	 • The vBNG forwarding pods Uplink
	 and Downlink
	 • The Telnet etcd agent (This agent is seen to be
	 shared between the BNG DP Management and BNG
	 Data Plane but physically it is deployed in the
	 Data Plane)

8. Architecture Study | Broadband Network Gateway

•	 Infrastructure
- This section uses K8’s CPU and Device Managers
to provide all the EPA features required by the CNF
specification for performant throughput
- This section is responsible for:
	 • The K8s Kubelet (Manages container state of
	 the Node)
	 • The K8s CPU Manager(Supplies exclusive vCPUs
	 to the vBNG Containers)
	 • The SRIOV Device Plugin (Supplies SR-IOV Virtual
	 Functions on demand to the vBNG Containers)
	 • The Topology Manager (Ensures resources received
	 from the host are NUMA Topology aligned)
	 • The Unified Flow Stack (Uses DCF and DDP to set
	 SR-IOV Switch rules allowing scale based on
	 subscriber header fields)

Control Plane Deployment
The Control Plane used in the BNG deployment is built by
BiSDN. This follows the same micro service architecture
as the other components in the BNG deployment in which
each element is deployed as a container entity. For the
BNG deployment, the BNG Control Plane may be deployed
on the same cluster as the BNGDP Management and BNG

Data Plane or in a separate remote cluster for commanding
multiple BNG clusters. If deployed in the same cluster it
utilizes the same container network interfaces (CNIs) as
with other BNG components; see Figure 16. If the network
operations engineer requires the BNG Control Plane to be
placed in a remote cluster, it would be expected of them to
set up something like the K8s Ingress Controller on the Data
Plane Cluster to ensure external BNG Control Plane access is
regulated and load balanced for the DPPFCP Agent to receive
and parse messages.

Deployment Overview
By combining all of the architecture proposals previously
discussed, it is possible to build a scalable, orchestratable,
and CUPS-enabled BNG solution that efficiently uses the
I/O and compute resources of an Intel® processor-based
server. This solution can help CoSPs address the need to
deliver ever-increasing bandwidth at lower cost, as outlined
at the beginning of the paper. Figure 17 provides a high level
overview of a full CUPS deployment alongside all ingress and
egress Broadband traffic.

Figure 15. Full Micro Service Architecture of a BNG Deployment

Figure 16. 1:N mapping of Control Plane to Data Plane on
multiple clusters

Figure 17. Scalable CUPS-Enabled BNG Architecture

9. Architecture Study | Broadband Network Gateway

Performance Benchmarking⁷
Performance measurements on the blue pipeline blocks
shown in Figure 18 were taken on a dual socket server with
Intel® Hyper-Threading Technology (Intel® HT Technology)
enabled, Enhanced Intel SpeedStep® Technology and
Intel® Turbo Boost Technology disabled. The same traffic
profile was applied to all instances (4,000 flows, downlink/
uplink packet size = 650B), and the cumulative throughput
(downlink+uplink) across all instances was measured. The
optional grey blocks were not enabled.

Figure 19 shows the throughput of an Intel® Xeon®
processor-based server with two 3rd Gen Intel Xeon Scalable
processors 6338N running vBNG container instances. The
throughput scales very effectively as we deploy from four
through thirty two vBNG instances with increment of four
instances.

With thirty two instances deployed, the throughput is
661Gbps when using RFC2544 test methodology with
0.001% packet loss. This is achieved using 96 data processing
cores (1.5 cores per instance for thirty two instances). All
resources used by the BNG application are local to the socket.
It is found to be I/O bound but not CPU bound.

Something to be noted with these results is that they were
run in a “Docker Only” configuration whereby K8’s was not
used to scale up and down instances.

Summary
The future viability of NFV-based networking equipment
running on general-purpose servers hinges on the ability
to service ever-increasing traffic volume in a cost-effective
manner. This paper presents architectural considerations
and benchmarking data that demonstrate the huge potential
for NFV-based packet processing. In addition, CoSPs can
deliver network connectivity and new services from the edge
of the network using a combination of BNG and service-edge
solutions. By rethinking how virtualized network functions
are created and deployed, new possibilities arise, such as:
1.	 Redefining the unit of performance from the number of

VMs or containers to the number of cores that deliver a
nearly linear increase in uplink and downlink throughput

2.	 Creating a model that is virtual network function (VNF)
architecture agnostic (i.e., VM, container, or baremetal).

3.	 Generating a deterministic price per home model that
stays predictable with the traffic CAGR.

4.	 Increasing network availability by converting the large
monolith of systems to distributed systems, which
enables CoSPs to better manage fault domains and
contain affected areas, thus minimizing connection
storms and outage times.

5.	 Creating a multifunction edge infrastructure that can
address both NFV and services.

Raw BNG performance is not one single data point answer
but a discussion on network location, subscriber density,
average bandwidth per subscriber, and traffic CAGR over
the deployment lifecycle. The vBNG architecture presented
in this paper allows CoSPs to model uplink and downlink
throughput and scale control and user plane function
independently on general-purpose servers in a predictable
and reliable way.

Figure 18. Performance Testing Pipeline Blocks

Figure 19. Intel® Xeon® Processor-Based Server (Dual Socket)
Throughput Running Various vBNG Instances

10. Architecture Study | Broadband Network Gateway

Appendix

vBNG Server

Platform Intel® Server System M50CYP Family

CPU 2x Intel® Xeon® Gold 6338N Processor, 2.2GHz, 32 Cores

Memory 16x32 GB DDR4

Hard Drive Intel® SSD D3-S4510 Series (480G)

Network interface Card 4x Intel® Ethernet Network Adapter E810-2CQDA2 (aka Chapman Beach)

Software

Host OS Red Hat Enterprise Linux 8.2 (Ootpa)

vBNG vBNG 20.11

Linux Container Docker version 20.10.5, build 55c4c88

DPDK DPDK-v20.11*

BIOS Settings
Bios Version: SE5C6200.86B.0020.P24.2104020811
uCode: 0xd0002c1
P-state Disabled, HT ON, C-States Disabled,Turbo Boost Disabled,SRIOV and Vtd enabled

Application Configuration per Instance

Uplink

Frame Size: 128B*; % of Overall Traffic: 11; Subscribers: 4K/Instance; 1x vCPU per Instance

ACL Blacklist with 150 Rules

Flow Classification Flows Classified on VLAN Tag Pair

Policer/Metering Two Rate Three Colour Marker

Routing Single Forwarding Rule

Downlink

Frame Size: 504B*; % of Overall Traffic: 89;Subscribers: 4K/Instance; 2x vCPU per Instance

ACL Reverse Path forwarding – One Rule per Subscriber (4k)

HQoS 5 Level HQOS – Port, Subport, Pipe, Traffic Class, and Queue

Routing One Route per Subscriber (4K)

*All vfs are bound to igb_uio module for application use.

**Frame size quoted is max size of frame at any point in processing.
(e.g. uplink 128Byte =120byte +{2x4Byte access vlan tags})

11. Architecture Study | Broadband Network Gateway

1. “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper,” February 27, 2019, pg.,

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html#_Toc484813985

2. Benchmark and performance tests ("benchmarks") measure different aspects of processor and/or system performance. While no single numerical measurement can completely
describe the performance of a complex device like a microprocessor or a personal computer, benchmarks can be useful tools for comparing different components and systems. The only
totally accurate way to measure the performance of your system, however, is to test the software applications you use on your computer system. Benchmark results published by Intel
are measured on specific systems or components using specific hardware and software configurations, and any differences between those configurations (including software) and your
configuration may very well make those results inapplicable to your component or system.

3. “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper,” February 27, 2019, pg. 2.

4. “Architecture for Control and User Plane Separation on BNG"

https://datatracker.ietf.org/doc/draft-wadhwa-rtgwg-bng-cups/

4. “Architecture for Control and User Plane Separation on BNG”,

https://datatracker.ietf.org/doc/draft-wadhwa-rtgwg-bng-cups/

5. Huawei* website, “NE40E V800R010C00 Feature Description - User Access 01,”

https://support.huawei.com/enterprise/en/doc/EDOC1100027162?section=j01i&topicName=pppoe-packet-format

6. “Intel® Ethernet Controller 800 Series -Dynamic Device Personalization (DDP) for Telecommunications Workloads”

https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide.pdf

7. Benchmark and performance tests ("benchmarks") measure different aspects of processor and/or system performance. While no single numerical measurement can completely
describe the performance of a complex device like a microprocessor or a personal computer, benchmarks can be useful tools for comparing different components and systems. The only
totally accurate way to measure the performance of your system, however, is to test the software applications you use on your computer system. Benchmark results published by Intel
are measured on specific systems or components using specific hardware and software configurations, and any differences between those configurations (including software) and your
configuration may very well make those results inapplicable to your component or system.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Performance results are based on testing as of dates shown in
configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results
may vary. Intel technologies may require enabled hardware, software or service activation.

	© Intel Corporation. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
Printed in USA 0821/BB/ICMCEL/PDF  Please Recycle 340031-002US

Test Environment Configuration Information and Relevant Variables

Traffic Generator Ixia Novus 100GE8Q28

Connection Details Ixia Ports and DUT Ports Connected Back-to-Back (Eight Connections)

