
Executive Summary
The ever-growing consumer demand for more bandwidth and services for less 
money has been driving service provider networks to their economic limit for some 
years now. In addition, communications service providers (CoSPs) need to support 
multiple access technology types (xDSL, PON, FWA, and DOCSIS) while making 
better use of existing fiber networks and increasing service delivery performance, 
all against a backdrop of declining revenues. With customer data traffic estimated 
to grow at a 26 percent rate (year over year) from 2017 to 2023,1 future networking 
solutions must show a path to solving tomorrow’s data compound-annual-growth-
rate (CAGR) challenge in a cost-effective and scalable way.

Pushing the boundary of performance requires the latest and greatest technology 
along with deploying this technology in a holistic and easy-to-use way. This paper 
proposes the following set of design principles for taking solutions based on Intel® 
architecture processors and network functions virtualization (NFV) to the next level 
of performance and network automation by utilizing the following: 

• Optimized server configuration

• Software “run-to-completion” model

• Intelligent I/O packet and flow distribution

• Independent scaling of the control and user planes 

• Hierarchical quality of service considerations  

• Deploying using Cloud Native Networking Fundamentals

Following these principles, Intel has demonstrated nearly 661 Gbps² of routing 
RFC2544 (zero packet loss) performance for a virtual broadband network gateway 
(vBNG) running on a single 3rd Gen Intel® Xeon® Scalable processor server. This 
paper describes this effort and proposes a vBNG architecture for building network 
infrastructure and network functions to better take advantage of the underlying 
infrastructure and address the challenge of the data CAGR.

To complement the shift of the Broadband data plane into a virtual ecosystem, 
this paper also puts forward a deployment architecture using the container 
orchestration engine Kubernetes (K8s). 
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Broadband Network Gateway
The BNG, aka broadband remote access server (BRAS), is 
the network edge aggregation point used by subscribers 
to access the Internet service provider (ISP) network. 
Through the BNG, subscribers connect to the ISP network to 
download Internet originating traffic and ISP services (e.g., 
web, voice, data, and video).  
 
The vBNG is a virtualized software instantiation of what 
is typically a large, ASIC-based, fixed-function appliance 
usually located in a central office or metro point of  
presence (PoP).

Reference Application Pipeline
Each generation of Intel technologies (e.g., CPU, NIC, SSD, 
FPGAs, and accelerators) brings new opportunities to 
improve performance and quality of experience (QoE) for 
users. Showing how to take advantage of these technologies, 
Intel builds reference pipelines, like the representative stages 
of vBNG control and data plane functions shown in Figure 2.

The control plane is responsible for subscriber authentication 
and management, including monthly usage service access 
and data plane configuration, based on subscriber profiles.

The upstream data plane manages the flow of traffic from 
users’ home routers to the ISP network. The average 
packet size for upstream traffic is generally smaller than for 
downstream traffic, and the amount of upstream traffic is 
normally five to eight times less than downstream traffic. 
While applications like Instagram, Snapchat, and Periscope, 

Figure 2. Virtual Broadband Network Gateway (vBNG)  
Control and Data Plane Blocks

Figure 3. Uplink Packet Flow Stages

have seen larger swathes of data being pushed onto the ISP 
network by users, broadband users are still overwhelmingly 
net consumers of data. In recent years, data and content 
creation has reduced the gap between upstream and 
downstream bandwidth usage.

Upstream Processing Stages
The Intel reference pipeline implements the upstream 
processing stages shown in Figure 3 and described in  
the following: 

Packet Rx (Receive): The data plane development kit (DPDK) 
poll mode driver (PMD) is used to receive bursts of frames 
from the network interface controller (NIC) port and send 
them directly into an uplink thread to begin vBNG packet 
processing, described in the next stages. 

Access Control Lists: The DPDK Access Control List (ACL) 
library is used to apply an ordered list of filters (e.g., masks, 
ranges, etc.) to the frame. These comprise permit and deny 
filters, and all filters are evaluated per packet.

Flow Classification: The DPDK Flow Classification Library is 
used to identify the session and classify the packet based on 
selected fields (e.g., 5 tuple).

Metering Policing: The DPDK Traffic Metering and Policing 
API is used to apply a two-rate, three-color marking and 
policing scheme to the traffic.

DSCP Rewrite: This stage supports the optional classification 
of the traffic type and rewrite of the IP differentiated services 
code point (DSCP) field to map the stream to a network 
supported class of service (CoS).

NAT: Optionally, NAT 44 is performed to convert private 
addresses to public addresses.

Routing: Access network encapsulations are stripped from 
data plane packets, and the packets are routed to the correct 
core network interface for transmission. Any core network 
encapsulations, such as MPLS, are applied either here or in 
the packet Tx block. 

Packet Tx (Transmit): The DPDK PMD is used to send bursts 
of frames to the NIC port. 
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The downstream data plane handles the flow of traffic and 
data from the Internet and ISP network to the end user. It 
manages and schedules traffic to users attached to the BNG. 
The downstream function optimizes bandwidth and resource 
usage to maximize users QoE, based on user tariff class and 
traffic priorities. The goal of the ISP is to ensure all their 
subscribers are receiving services to the highest standard 
while maximizing the utility of the network infrastructure. By 
2022, global IP video traffic is forecast to grow four-fold from 
2017 to 2022, a CAGR of 29 percent,³ and this trend will drive 
up the average packet size of the downstream link. 
 
Downstream Processing Stages   
The Intel reference pipeline implements the downstream 
processing stages shown in Figure 4 and described in  
the following:

Packet Rx: The DPDK PMD receives frames from the NIC 
port and sends them directly into a downlink thread to begin 
vBNG packet processing, described in the next stages. 

Access Control Lists (ACL): The DPDK Access Control List 
(ACL) library is used to apply an ordered list of filters (e.g., 
masks, ranges, etc.) to the frame. This stage blocks reverse 
path forwarding.

NAT: Optionally, NAT 44 is performed to convert public 
addresses to private addresses. 

Traffic Management: Each packet runs through a hierarchical 
QoS (HQoS) block to ensure high priority packets are 
prioritized when transmitting packets to the access network. 
It supports scalable five-level hierarchical construction (port, 
subport, pipe, traffic class and queues) of traffic shapers and 
schedulers to guarantee the bandwidth for different services 
used by subscribers. Each pipe is assigned to a single 
subscriber.

Routing: Access network encapsulations are stripped from 
data plane packets, and the packets are routed to the correct 
data network interface for transmission. Any access network 
encapsulations, such as VLAN, PPPoE etc., are applied either 
here or in the packet Txblock.

Packet Tx: Using a DPDK polled mode driver (PMD), bursts of 
frames are transmitted to the NIC port.

New Architectural Proposal and Reasoning
In order to effectively deploy a BNG workload on a 
general-purpose server, the following architectural and 
implementation aspects should be considered: 
 
Implementing a Run to Completion Model 
One of the key considerations when designing a software-
based BNG is ensuring performance scalability per this 
paper’s opening problem statement. The BNG should 
be assigned the minimal number of resources needed to 
support the current number of active subscribers at any time 
of the day. This means the BNG must be able to scale both up 
and down based on the current workload.  

The Intel reference BNG pipeline uses a run to completion 
model to process the uplink and downlink pipelines. As a 
result, all pipeline functions executed on a packet are run 
on the same core. This has advantages in that packets do 
not have to move between cores, thereby minimizing cache 
misses and overall latency. A direct result of this design 
pattern is that an individual vBNG instance cannot scale out 
beyond a single core. Scaling beyond a single core is done by 
creating a new vBNG instance that runs on a different core. 
The NIC is programmed (using custom headers supported 
by the Comms DDP package) on the fly to direct specific 
subscribers to each new individual vBNG instance (More on 
this further on in the paper).

The combination of a run to completion model and a single 
core running a single vBNG instance eliminates the need 
for the orchestrator to understand the internal operation 
of the vBNG application to scale. The orchestrator can scale 
capacity up or down by increasing or decreasing the number 
of CPU cores assigned to the BNG deployment (5 vCPUs per 
Instance with K8s), enabling linear scalability across a given 
server. The orchestrator can optimize resource utilization 
when it is furnished with information regarding the number 
of subscribers (for a known traffic profile) that a single core 
instance can support, which may vary by CPU SKU.

Separating Uplink and Downlink Processing 
CPU resource usage by the BNG uplink and downlink 
pipelines are not symmetric since the downlink normally 
requires more cycles per packet due to inherently larger 
packet sizes. In order to effectively schedule a BNG, the 
Intel reference pipeline splits the uplink and downlink into 

Figure 4. Downlink Packet Flow Stages
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Figure 5. CPU Core Allocation Example for 16vBNGs 
Instances Running per Socket

Figure 6. BNG Downlink Container Using A Single SR-IOV VF 
for Both Rx and Tx

two separate containers that can be instantiated and then 
scheduled separately. This separation provides greater 
flexibility in scheduling and CPU resource usage. For 
example, a downlink pipeline can be assigned a full physical 
core (two sibling hyper-threaded cores) while an uplink 
pipeline might only require half a physical core (one hyper-
thread core). Figure 5 shows how the CPU resources of a dual 
socket server could be partitioned when running sixteen 
vBNG instances per socket in a Docker only configuration 
(i.e not using K8s). Each pipeline can report telemetry 
individually, and the telemetry database can be used to 
maintain all relevant usage statistics. It is also worth noting 
whilst uplink and downlink pipelines are deployed as 
separate DPDK applications and containers this paper puts 
forward the architecture of coupling them together using 
Kubernetes and its pod deployment API. 

Assigning a Single I/O Connection per Pipeline

The Intel reference pipeline should be run on a BNG 
dataplane server connected to a basic leaf switch that 
can route both access and data network traffic. With this 
setup,the switch routes uplink traffic coming from the access 
network ports to the BNG ports for processing and routes 
returning packets from BNG uplink pipelines to the data 
network ports. The flow is reversed for downlink traffic.
As mentioned previously, the amount of uplink traffic is 
increasing over time, but it is generally only an eighth of 
the downlink traffic in a wireline network. Therefore, a BNG 
that uses separate,dedicated physical ports for access and 
data network port connections is likely to under utilize the 
available I/O bandwidth of the uplink ports. Instead, sharing 
physical ports on a NIC between upstream and downstream 
traffic allows I/O bandwidth to be fully utilized. As a vBNG 
instance is split into two separate pipeline applications, 
each pipeline only handles traffic for a single direction. All 
traffic is routed to and from the server through the simple L2 
switch, such that each pipeline does not require dedicated 
access and data network ports. The server effectively needs 
just a single I/O connection on which it receives traffic from 
the switch and returns processed traffic to the switch for 
forwarding, as shown in Figure 6. 

The routing of subscriber traffic to a vBNG instance is  
done via a dedicated Single Root Input/Output Virtualization 
(SR-IOV) connection that can send arriving packets to  
the vBNG in accordance with its SR-IOV switch(with DDP). 
SR-IOV allows a single physical NIC port to be split and 
shared among multiple pipeline instances, each with its own 
I/O port i.e a Virtual Function (VF). SR-IOV also provides 
flexibility in the use of physical NICs, such as dedicating a 
physical NIC to downlink traffic only or sharing a NIC between 
uplink and downlink traffic. As NIC speeds hit 100 gigabit, it is 
expected that downlink and uplink traffic will share the same 
physical NIC and these principals influence the deployment 
architecture of the vBNG today. 

Balancing I/O on the Server

With dual socket servers, internal connections such as 
Platform Controller Hubs (PCHs) and SATA controllers are 
commonly connected to CPU 0, as shown on the left side of 
Figure 7. This can result in an uneven distribution of PCIe I/O 
bandwidth between the CPUs, with most of the bandwidth 
being connected to CPU 1. To balance the bandwidth, the 
Intel vBNG application runs control plane functions on CPU 
0 and data plane functions on CPU 1, as shown on the right 
side of Figure 7.

Figure 7. Balancing I/O on a Server
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(DCF) technology. DCF sets Flow Rules through a trusted 
VF allowing the user to keep the SR-IOV Physical Function 
bound to the Linux driver for management and metric 
collection as seen in Figure 8. When distributing flows in the 
Intel® Ethernet Network Adapter E810 it must be noted that 
for distributing flows amongst VFs the SR-IOV Switch is used 
and for distributing flows amongst Queues, Flow Director 
(FDIR) or Receive Side Scaling (RSS) is used. In the BNG 
deployment, flows are distributed using VFs thus that is the 
focus of this paper. Further information on RSS and FDIR can 
be found in other Intel Telco white papers.

Dynamic Device Personalization
Alongside DCF is Dynamic Device Personalization (DDP)⁶ 
which allows the SR-IOV Switch to filter on more packet 
header types than the default amount without reloading the 
Ethernet Controller NVM image. For the BNG application 
deployment, the Telecommunication (Comms) Dynamic 
Device Personalization (DDP) Package is used (Figure 9).  
Once added this package allows the Ethernet Controller to 
steer traffic based on PPPoE header fields to the Control 
Plane offload VF. The DDP PPPoE profile enables the NIC  
to route packets to specific VFs and queues (Figure 10) based 
on the unique PPPoE header fields (described more in the 
next section).

When deploying a BNG on a general-purpose server, it 
is important to ensure there is enough I/O bandwidth to 
fully utilize the available CPU resources on the platform 
(i.e., the aim is to be CPU bound and not I/O bound). The 
advent of Control and User Plane Separation (CUPS)⁴ for 
BNG enables an entire server to be dedicated to running 
the BNG data plane. All data processing is localized to a 
single socket for performance efficiency, which necessitates 
an equal amount of I/O to be connected to each socket to 
achieve optimal performance. The provisioning of 2x16 or 
4x8 lane PCIe Gen 4 (16 GT/s) slots on each socket provides 
a total I/O bandwidth of 800 Gbps on the server, equally 
balanced across the two sockets (see the Appendix for server 
configuration details).
 

Distributing Flows Via a Network Interface Card (NIC) 
As described above each BNG instance has a set number 
vCPUs processing subscriber traffic. Some form of distributer 
is required in order split out the subscriber flows among the 
vCPUs. This distributor task can be performed in software 
using dedicated cores, but there are several disadvantages 
to this approach. First, this distributer function can become 
a performance bottle neck as all flows must pass through 
this software function. Second, having one or many cores 
dedicated to performing distribution reduces the amount 
of CPU cycles available to perform the actual BNG workload 
processing, thus reducing the number of BNG subscribers the 
server can handle. 

These disadvantages can be overcome by distributing the 
flows in the NIC to either SR-IOV VFs or Queues in the PMD, 
which eliminates the software bottle neck, reduces latency 
through the system, and provides the BNG the CPU cores and 
cycles that otherwise would be used by the distributor task.
 
Assigning a Single I/O Connection per Pipeline
Device Config Function (DCF)

The Intel® Ethernet Network Adapter E810 is a NIC that 
supports flow distribution using the Device Config Function 

Figure 8. Device Config Function Workflow

Figure 9. DDP Packages for E810 NIC
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Considering HQoS
Hierarchical QoS is a function that is implemented within 
the vBNG downlink pipeline. It ensures traffic priority is 
preserved when traffic coming from the core network is 
scheduled for transmission on the reduced bandwidth access 
network pipe to a subscriber, and the available bandwidth on 
a given port is shared efficiently across all users. The HQoS 
scheduler can either be implemented in NIC if support is 
available or as a software function in packet processing 
pipeline before the transmit function. As discussed 
previously, each downlink pipeline has a single virtual 
function connection for I/O. The following sections describe 
three models for implementing HQoS: 

Software-Only Model
A software-only model fully implements HQoS schedular 
in software. As shown in Figure 12, each vBNG downlink 
pipeline is apportioned part of the port’s overall bandwidth 
and shapes its traffic to that sub port rate. The advantage of 
this method is no hardware support is needed, and allows 
to scale the HQoS scheduler instances with downlink packet 
processing pipelines. The disadvantage of this method is 
unused bandwidth in one vBNG instance cannot be shared 
with another instance, which may lead to sub-optimal use of 
the port’s bandwidth.

Hardware/Software Hybrid Model
A hybrid model can be used when the resources on the NIC 
(e.g. queues, scheduler/shaping nodes) are not sufficient to 

Figure 12. Software-Only HQOS Model

Forwarding Control Plane Packets 
For control plane traffic, like PPPoE session setup or PPPoE 
link control packets, the BNG data plane must identify and 
forward these packets to the control plane for processing. In 
a traditional BNG, the control plane and the data plane are 
located in the same place and a local software queue is used 
to move packets between them. With the advent of CUPS, 
the control plane and the corresponding data plane is most 
likely located in different physical locations in the network. In 
this case, the BNG data plane needs to pass control packets 
to the control plane by generating a physical link to forward 
them. As can be seen in Figure 10, the Intel Ethernet Network 
Adapter E810 is able to identify these control packets using 
the Comms DDP package and forward them to a separate VFs 
and queues (I/O), relieving the data plane of this task. The 
Comms DDP package enables the Intel NIC to recognize these 
control plane packets and forward them the control plane. 
Figure 11 gives a higher level view of how this works with the 
BNG application deployment.  

Figure 10. NIC Routes Packets to Virtual Functions based on PPPoE and DHCP Packet Headers

Figure 11. Control Plane Traffic Forwarding
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fully implement the HQoS scheduler as shown in Figure 13.  
In this model, each BNG instance implements some 
scheduling/shaping levels of the hierarchy in software 
and remaining levels are implemented in NIC. Decision on 
dividing the hierarchy between software and hardware 
depends upon the number of NIC resources.  As an 
advantage, this model allows unused bandwidth from  
one BNG instance to be shared among other instances.

Full HQoS Offload Model
A full HQoS offload model requires a NIC that can support 
full offload of HQoS processing from all vBNG instances, as 
shown in Figure 14. A major advantage of this model is the 
CPU does not play a role in HQoS, freeing up CPU cycles  
for other pipeline blocks.

The proposed vBNG architecture supports all three of  
these models, depending on the capabilities of the 
underlying hardware.

Orchestration of the BNG
The vBNG architecture proposed in this paper does not limit 
how a vBNG instance is virtualized. For example, either full 
virtual machine (VM) virtualization or Linux containers can 
be used. When a vBNG comprises of two individual pipelines, 
deploying each in a separate container may/can be better 
as it is a light weight virtualization option, compared to 
deploying in virtual machines. Containers also allow for more 
rapid initialization and recovery of instances following the 
convention in network deployments of high availability.  
For the deployment of a vBNG instance in both the reference 
application and this paper, a pair of containers is launched 
by the orchestration engine Kubernetes. This section will 
further discuss how this is achieved under the umbrella 
convention of a Cloud-Native Network Function (CNF). The 
two biggest influences on the design and deployment of the 

Figure 13. Hardware/Software Hybrid Model

Figure 14. Full HQoS Offload Model

vBNG is the CUPs architecture and Cloud-Native Networking. 
CUPS described earlier makes the control and user plane 
two separate entities that communicate over a set API. This 
section will mainly focus on how the vBNG achieves Cloud-
Native Networking at high throughput rates. Also referenced 
in other Intel wireline papers are the following conventions 
that a telco application needs to abide by to consider  
itself a CNF:

•	 Highly Performant – The CNF must take advantage of 
Enhanced Platform Awareness (EPA) features to ensure 
low latency and high throughput.

•	 Agile Placement – The CNF must allow for flexible 
placement to be allowed to deploy on any EPA feature 
ready platform and must be generic to the EPA 
infrastructure provided beneath.

•	 Lifecycle Management – Using automatic telemetry 
aware controllers, the CNF must ensure that it can 
scale resources under increasing workloads and retract 
resources under decreasing workloads.

•	 Highly Available – The CNF must always present high 
availability to its required workload by engraining 
extreme fault tolerance into the component architecture 
to meet the Service Level Agreement of almost zero 
downtime. The CNF must also utilise the HA schema 
to maintain interfaces for quick and simple service 
upgrades without any effect on the service it provides.

•	 Observability – The CNF must ensure all network and 
performance metrics of workloads are exposed through 
an easy to consume platform allowing for rapid network 
debugging and modification.

Date Plane Deployment 
The deployment of the vBNG follows a strict microservice 
model where each element of application deployment is 
separated into the smallest possible execution unit that will 
not affect performance. As can be seen in Figure 15, the full 
Data Plane deployment (Not Control Plane) is separated into 
3 components:
•	 BNG DP Management 

- In short, this section is seen as the interface  
between the Control Plane and the Data Plane in a  
full CUPS deployment 
- This section is responsible for: 
	 • Receiving Data Plane Configuration (PFCP Agent) 
	 • Setting and storing the Data Plane  
	 Configuration (etcd) 
	 •Retrieving telemetry data from the Data  
	 Plane instances 
	 • Managing the scale of vBNG Pods/Instances

•	 BNG Data Plane 
- Discussed previously this section is responsible for: 
	 • The vBNG forwarding pods Uplink  
	 and Downlink 
	 • The Telnet etcd agent (This agent is seen to be   
	 shared between the BNG DP Management and BNG  
	 Data Plane but physically it is deployed in the  
	 Data Plane) 
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•	 Infrastructure 
- This section uses K8’s CPU and Device Managers 
to provide all the EPA features required by the CNF 
specification for performant throughput 
- This section is responsible for: 
	 • The K8s Kubelet (Manages container state of  
	 the Node) 
	 • The K8s CPU Manager( Supplies exclusive vCPUs  
	 to the vBNG Containers) 
	 • The SRIOV Device Plugin (Supplies SR-IOV Virtual  
	 Functions on demand to the vBNG Containers) 
	 • The Topology Manager (Ensures resources received  
	 from the host are NUMA Topology aligned) 
	 • The Unified Flow Stack (Uses DCF and DDP to set  
	 SR-IOV Switch rules allowing scale based on  
	 subscriber header fields) 

Control Plane Deployment
The Control Plane used in the BNG deployment is built by 
BiSDN. This follows the same micro service architecture 
as the other components in the BNG deployment in which 
each element is deployed as a container entity. For the 
BNG deployment, the BNG Control Plane may be deployed 
on the same cluster as the BNGDP Management and BNG 

Data Plane or in a separate remote cluster for commanding 
multiple BNG clusters.  If deployed in the same cluster it 
utilizes the same container network interfaces (CNIs) as 
with other BNG components; see Figure 16. If the network 
operations engineer requires the BNG Control Plane to be 
placed in a remote cluster, it would be expected of them to 
set up something like the K8s Ingress Controller on the Data 
Plane Cluster to ensure external BNG Control Plane access is 
regulated and load balanced for the DPPFCP Agent to receive 
and parse messages. 

Deployment Overview
By combining all of the architecture proposals previously 
discussed, it is possible to build a scalable, orchestratable, 
and CUPS-enabled BNG solution that efficiently uses the 
I/O and compute resources of an Intel® processor-based 
server. This solution can help CoSPs address the need to 
deliver ever-increasing bandwidth at lower cost, as outlined 
at the beginning of the paper. Figure 17 provides a high level 
overview of a full CUPS deployment alongside all ingress and 
egress Broadband traffic. 
 

Figure 15. Full Micro Service Architecture of a BNG Deployment

Figure 16. 1:N mapping of Control Plane to Data Plane on 
multiple clusters

Figure 17. Scalable CUPS-Enabled BNG Architecture
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Performance Benchmarking⁷
Performance measurements on the blue pipeline blocks 
shown in Figure 18 were taken on a dual socket server with 
Intel® Hyper-Threading Technology (Intel® HT Technology)
enabled, Enhanced Intel SpeedStep® Technology and 
Intel® Turbo Boost Technology disabled. The same traffic 
profile was applied to all instances (4,000 flows, downlink/
uplink packet size = 650B), and the cumulative throughput 
(downlink+uplink) across all instances was measured. The 
optional grey blocks were not enabled. 

Figure 19 shows the throughput of an Intel® Xeon®  
processor-based server with two 3rd Gen Intel Xeon Scalable 
processors 6338N running vBNG container instances. The 
throughput scales very effectively as we deploy from four 
through thirty two vBNG instances with increment of four 
instances. 

With thirty two instances deployed, the throughput is 
661Gbps when using RFC2544 test methodology with 
0.001% packet loss. This is achieved using 96 data processing 
cores (1.5 cores per instance for thirty two instances). All 
resources used by the BNG application are local to the socket. 
It is found to be I/O bound but not CPU bound. 

Something to be noted with these results is that they were 
run in a “Docker Only” configuration whereby K8’s was not 
used to scale up and down instances.

Summary
The future viability of NFV-based networking equipment 
running on general-purpose servers hinges on the ability 
to service ever-increasing traffic volume in a cost-effective 
manner. This paper presents architectural considerations 
and benchmarking data that demonstrate the huge potential 
for NFV-based packet processing. In addition, CoSPs can 
deliver network connectivity and new services from the edge 
of the network using a combination of BNG and service-edge 
solutions. By rethinking how virtualized network functions 
are created and deployed, new possibilities arise, such as: 
1.	 Redefining the unit of performance from the number of 

VMs or containers to the number of cores that deliver a 
nearly linear increase in uplink and downlink throughput

2.	 Creating a model that is virtual network function (VNF)
architecture agnostic (i.e., VM, container, or baremetal).

3.	 Generating a deterministic price per home model that 
stays predictable with the traffic CAGR.

4.	 Increasing network availability by converting the large 
monolith of systems to distributed systems, which 
enables CoSPs to better manage fault domains and 
contain affected areas, thus minimizing connection 
storms and outage times.

5.	 Creating a multifunction edge infrastructure that can 
address both NFV and services. 

Raw BNG performance is not one single data point answer 
but a discussion on network location, subscriber density, 
average bandwidth per subscriber, and traffic CAGR over 
the deployment lifecycle. The vBNG architecture presented 
in this paper allows CoSPs to model uplink and downlink 
throughput and scale control and user plane function 
independently on general-purpose servers in a predictable 
and reliable way.

Figure 18. Performance Testing Pipeline Blocks

Figure 19. Intel® Xeon® Processor-Based Server (Dual Socket)
Throughput Running Various vBNG Instances
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Appendix

vBNG Server

Platform Intel® Server System M50CYP Family

CPU 2x Intel® Xeon® Gold 6338N Processor, 2.2GHz, 32 Cores

Memory 16x32 GB DDR4 

Hard Drive Intel® SSD D3-S4510 Series (480G)

Network interface Card 4x Intel® Ethernet Network Adapter E810-2CQDA2 (aka Chapman Beach)

Software

Host OS Red Hat Enterprise Linux 8.2 (Ootpa)

vBNG vBNG 20.11

Linux Container Docker version 20.10.5, build 55c4c88

DPDK DPDK-v20.11*

BIOS Settings
Bios Version: SE5C6200.86B.0020.P24.2104020811 
uCode: 0xd0002c1 
P-state Disabled, HT ON, C-States Disabled,Turbo Boost Disabled,SRIOV and Vtd enabled

Application Configuration per Instance

Uplink

Frame Size: 128B*;  % of Overall Traffic: 11; Subscribers: 4K/Instance; 1x vCPU per Instance

ACL Blacklist with 150 Rules

Flow Classification Flows Classified on VLAN Tag Pair

Policer/Metering Two Rate Three Colour Marker

Routing Single Forwarding Rule

Downlink

Frame Size: 504B*;  % of Overall Traffic: 89;Subscribers: 4K/Instance; 2x vCPU per Instance

ACL Reverse Path forwarding – One Rule per Subscriber (4k)

HQoS 5 Level HQOS – Port, Subport, Pipe, Traffic Class, and Queue 

Routing One Route per Subscriber (4K)

*All vfs are bound to igb_uio module for application use.

**Frame size quoted is max size of frame at any point in processing.  
(e.g. uplink 128Byte =120byte +{2x4Byte access vlan tags})



11. Architecture Study | Broadband Network Gateway

1. “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper,” February 27, 2019, pg.,

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html#_Toc484813985

2. Benchmark and performance tests ("benchmarks") measure different aspects of processor and/or system performance. While no single numerical measurement can completely 
describe the performance of a complex device like a microprocessor or a personal computer, benchmarks can be useful tools for comparing different components and systems. The only 
totally accurate way to measure the performance of your system, however, is to test the software applications you use on your computer system. Benchmark results published by Intel 
are measured on specific systems or components using specific hardware and software configurations, and any differences between those configurations (including software) and your 
configuration may very well make those results inapplicable to your component or system.

3. “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper,” February 27, 2019, pg. 2.

4. “Architecture for Control and User Plane Separation on BNG"

https://datatracker.ietf.org/doc/draft-wadhwa-rtgwg-bng-cups/

4. “Architecture for Control and User Plane Separation on BNG”,  

https://datatracker.ietf.org/doc/draft-wadhwa-rtgwg-bng-cups/

5. Huawei* website, “NE40E V800R010C00 Feature Description - User Access 01,” 

https://support.huawei.com/enterprise/en/doc/EDOC1100027162?section=j01i&topicName=pppoe-packet-format

6. “Intel® Ethernet Controller 800 Series -Dynamic Device Personalization (DDP) for Telecommunications Workloads”

https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide.pdf

7. Benchmark and performance tests ("benchmarks") measure different aspects of processor and/or system performance. While no single numerical measurement can completely 
describe the performance of a complex device like a microprocessor or a personal computer, benchmarks can be useful tools for comparing different components and systems. The only 
totally accurate way to measure the performance of your system, however, is to test the software applications you use on your computer system. Benchmark results published by Intel 
are measured on specific systems or components using specific hardware and software configurations, and any differences between those configurations (including software) and your 
configuration may very well make those results inapplicable to your component or system.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.  Performance results are based on testing as of dates shown in  
configurations and may not reflect all publicly available updates.  See backup for configuration details.  No product or component can be absolutely secure. Your costs and results  
may vary. Intel technologies may require enabled hardware, software or service activation.

	© Intel Corporation. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
Printed in USA       0821/BB/ICMCEL/PDF       Please Recycle     340031-002US

Test Environment Configuration Information and Relevant Variables

Traffic Generator Ixia Novus 100GE8Q28

Connection Details Ixia Ports and DUT Ports Connected Back-to-Back (Eight Connections)


